PHITS
Multi-Purpose Particle and Heavy Ion Transport code System
PHITS講習会 基礎実習(I):
体系及び線源の定義
2015年10月改訂
title
1
本実習の目標
PHITS入力ファイルの基礎的な書式を理解し,
基本的な体系と線源を設定して粒子輸送シミュ
レーションが実行できるようになる
本実習の最後に行うシミュレーション結果。円柱の水に
290MeV陽子ビームを入射した時の体系内での粒子フルエンス
Purpose
2
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
3
PHITS入力ファイルの書式
全ての計算条件はテキスト入力(PHITS語)
入力ファイルは複数のセクションで構成
[ セクション名 ] ←セクションのはじまり
入力ファイルの基本書式
キーワード(パラメータ) = 数値 または 文字列
(スペースは無視)
数値(文字列)1
もしくは
数値(文字列)2
数値(文字列)3 …
• スペース区切り
• 1行に書けるのは200文字まで。それ以上は継続行に書く
• 継続行は,文頭に6個以上のスペースを入れる
パラメータを数式で与えることも可能: 例 1.0+exp(-2.0)
General description
4
入力補助
[
]off
セクションの読み飛ばし。
コメント
文頭5カラム内にあるC
文中にある$もしくは#
(ただし、[cell]と[surface]セクションでは#は
使えません)
qp:
次のセクションまで読み飛ばし。
q:
[End]セクションと同義。
全角文字は,コメント文内のみ利用可能(全角スペースに注意!)
General description
5
入力ファイルに必要なもの
• PHITSコードによるシミュレーション計算は、
コンピュータ上(バーチャルな世界)に3次元
の実験体系を構築し、体系内で発生した放
射線の振る舞いを観察するものである。
⇒ ① 3次元体系
② 線源
三大要素
③ 検出器 サンプルインプット「lec01.inp」
で確認してみよう。
General description
6
計算結果
track_xz.eps
phits.out
バージョン情報
計算結果の画像表示
計算のSummary
General description
7
標準出力ファイル
phits.out 計算結果のSummary,エラー情報が表示される場合もあり
事務局がお尋ねする場合があります
 PHITSロゴ+バージョン情報
 インプットエコー
• 入力ファイルから読み込んだ各パラメーターの値
• デフォルトの値やパラメーターの説明が記載されている
• “off”を用いて読み飛ばしたセクションは含まれない
使用量が多すぎてエラーが表示される場合あり
 計算に使用したメモリのレポート
• Geometry(体系), Material(物質), tally(検出器)等のそれぞ
れの使用状況
 各バッチの情報(バッチについては基礎実習(III)にて説明)
 PHITS計算全体のまとめ
• ソース粒子の発生回数、核反応が起きた回数等
• 輸送した粒子の情報
• 核反応等で生成した粒子の数
• CPU time(計算時間)
• 核データの利用回数、核反応モデル毎の使用回数(核デー
タや核反応モデルについては基礎実習(III)にて説明)
General description
8
サンプルインプットの構成
[Title]
lec01.inp
入力ファイルは、
9つの[
]セクション
で構成されています。
title comments
[Parameters]
define parameters
[Source]
② 線源
define source
放射線の発生
[Material]
define materials
[Surface]
①
3次元体系
define surfaces
実験体系
[Cell]
define cells
[T-Track]
track length tally
[T-3dshow]
観察する
3d show tally
[End]
※ セクションは順不同で記載可
③ 検出器
General description
9
セクションの種類
セクション名
セクション名
[title]
[frag data]
[parameters]
[importance]
[source]
[weight window]
[material]
[forced collisions]
[surface]
[brems bias]
[cell]
[photon weight]
[transform]
[volume]
[temperature]
[multiplier]
[mat time change]
[mat name color]
[magnetic field]
[reg name]
[electro magnetic field]
[counter]
[delta ray]
[timer]
[super mirror]
[end]
[elastic option]
General description
※ 各セクションに
ついてはマニュア
ル4節を参照してく
ださい。
10
Tally(検出器)セクション
セクション名
セクション名
[t-track]
[t-sed]
[t-cross]
[t-time]
[t-heat]
[t-star]
[t-deposit]
[t-dchain]
[t-deposit2]
[t-userdefined]
[t-yield]
[t-gshow]
[t-product]
[t-rshow]
[t-dpa]
[t-3dshow]
[t-let]
Tallyセクションは複数個定義できます。
情報を取得する検出器の役割を果たすものです。
*各タリーセクションについてはマニュアル6節をご参照ください。
General description
11
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
12
基本的な定義の方法
PHITSで3次元体系を定義する際は次の手順で行います。
1) [Material]で物質を定義する
水(H2O)
2) [Surface]で容れ物の面を定義する
アルミ(Al)
球面
直方体
の面
円柱面
組み合わせる
3) [Cell]で物質を入れて容れ物(セル)を定義する
球状の水
直方体の
アルミ
円柱状の水
Geometry (General definition)
13
3次元体系の座標系
PHITSでは、XYZ座標系に計算体系(容れ物の集合)を
構築します。
Z
Y
X
バーチャルな世界の無限に広がる空間を使用できます。
ただし、真空や空気の領域も明示的に定義する必要があり、
また、計算体系の外側の領域も定義する必要があります。
Geometry (General definition)
14
物質を定義する
• 物質番号, (元素, 密度)…
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
10.
[Cell]
100
1 -1.0
101 -1
1H
: 16O = 2 : 1
⇒ H2O(水)
-10
10
物質(material)を定義する際は幾つかの書式が利用できます。
• 1H 2.0 16O 1.0 (密度を正の値で与えた場合: 原子比率)
•1H -2.0/18.0 16O -16.0/18.0 (密度を負の値で与えた場合: 質量比)
• 1001 2.0 8016 1.0 (元素の記述方法: Z*1000 + A)
Geometry (General definition)
15
面を定義する
•面番号, 形状, パラメーター(大きさ, 位置座標)
•長さに関するパラメーターの単位は “cm”
lec01.inp
[Material]
mat[1] 1H 2 16O 1
“XYZ座標系の原点を中心と
した球の表面”を表す記号。
半径は10cm
[Surface]
10 so
10.
[Cell]
100
1 -1.
101 -1
10
-10
様々な形状の面をPHITSでは定義できます。
• so, sx, sy, sz, s (球面)
• px, py, pz (平面)
• cx, cy, cz (円柱側面)
•rpp (直方体)
etc. (マニュアル4.5参照)
Geometry (General definition)
16
容れ物(セル)を定義する
• セル番号, 物質番号, 密度, 面番号
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
10.
[Cell]
100
1 -1.0
101 -1
-10
10
100: セル番号
1 : 物質番号
-1.0 : 物質密度
= 1.0 g/cm3
(正の場合:1024 atoms/cm3)
-10 : 10番の面の内側
101: セル番号
-1 : 仮想空間の領域外(密度の項は不要)
10 : 10番の面の外側
Geometry (General definition)
17
体系の確認
lec01.inp
[Parameters]
icntl = 8
file(6) = phits.out
作成した体系を
確認する時の値
体系を確認する手順
1) [Parameters]セクションに
あるicntlパラメータを変更する。
2) PHITSを実行する。
3) epsファイル“track_xz.eps”
を表示させる。 ダブルクリック
track_xz.eps
原点を中心とする半径10cmの球
(XZ平面による断面図)
Geometry (General definition)
18
課題1
球の半径を10cmから20cmに変えてみよう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
10.
[Cell]
100
1 -1.0
101 -1
-10
10
Geometry (General definition)
19
課題1の答え合わせ
球の半径を10cmから20cmに変えてみよう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
20.
[Cell]
100
1 -1.0
101 -1
-10
10
track_xz.eps
球の半径が20cmに
なっていますか?
Geometry (General definition)
20
インプットファイルについて
PHITSの講習会資料は、基本的に途中で課題や例題を
出して、その問題を実習することを想定して作成しています。
基本的には,1つのインプットファイル(基礎実習1の場合
はlec01.inp)を編集して行きますが,各課題の変更内容を反
映させたインプットファイルも各レクチャーフォルダの/input/
フォルダ中に用意しています。もし、幾つかの課題を飛ばした
い場合がありましたら、 /input/フォルダにあるファイルをコ
ピーして、挑戦したい課題に進んでください。
ただし、ファイル名に付けられている数字は、挑戦すべき
課題の番号に対応しています。例えば、課題3に挑戦する場
合は、lec01-3.inpのファイルをご使用ください。課題1と課題2
で行われるべき編集が反映された内容となっています。
Geometry (General definition)
21
新しい面の定義方法
XYZ座標系の原点を中心とした半径5cmの球面を
[surface]セクションに追加してみよう
※ 1列目の数値“10”は面の識別番号(面番号
と言う)です。面番号は1~999999まで自由に
付けられますが,今回は仮に“11”としましょう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
20.
11 so
5.
[Cell]
100
1 -1.0
101 -1
-10
10
Geometry (General definition)
22
課題2
新しく定義した面(面番号11)を使って,半径5 cmの
水球を[cell]セクションに加えてみよう。
• 1列目の数値“100”は容れ物の識別番号(セル番号と言う)
です。セル番号も1~999999まで自由に付けられますが,今
回は仮に“102”としましょう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
20.
11 so
5.
[Cell]
100
1 -1.0 -10
101 -1
10
102 *** *** ***
Geometry (General definition)
23
課題2の答え合わせ
新しく定義した面(面番号11)を使って,半径5 cmの
水球を[cell]セクションに加えてみよう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
20.
11 so
5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
-10
10
-11
track_xz.eps
セル番号102と
セル番号100は領域が被っている。
⇒ 二重定義
どっちとも取ることができ混乱。
半径5cmの球の領域は体系エラー
(二重定義)となっている。
(体系エラーファイルtrack_xz.errが
出力される)
Geometry (General definition)
24
体系エラー(未定義)
• 二重定義 ⇔ 未定義
現在位置(対応する物質)
を見失い、困ってしまう。
未定義領域がある場合
(ただし、周りの定義された領域が
未表示となる場合があります。)
注) PHITSではバーチャルな世界の無限に広がる空間を使用す
ることができる。逆に、全ての空間は何かしらの物質で満たす
必要がある。
3次元体系の定義には、一意となる指定方法が求められる。
Geometry (General definition)
25
体系エラーファイル
体系エラーが起こっている場合、どの領域
(座標)で起こっているのかをまとめた体系
エラーファイル(拡張子err)が作成されます。
track_xz.err
体系エラーが起こって
いるx, y, z座標
Errors of cell definition in EPS Page No. = 1
Overlapped Cell IDs x, y, z coodinates
(Cells 0
0 indicate undefined region)
100
102 -4.847761E+00 1.234568E-11 -1.211940E+00
100
102 -4.847761E+00 1.234568E-11 -1.009950E+00
100
102 -4.847761E+00 1.234568E-11 -8.079602E-01
・・・ ・・・ ・・・ ・・・
2重定義となっている
セル番号
1つしかエラーが起こっていない場合でも、
複数の座標点における情報が書き出され
ます。
Geometry (General definition)
26
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
27
領域を定義する方法
• 容れ物の領域を定義するために、
集合論理演算を用いて定義する。
面番号11
集合代数の例
+11(面11の外側)
-11
(面11の内側)
Geometry
28
積:AかつB (A and B)
2つの面で囲まれた領域を定義する場合は、
2つの面番号を“スペース”で繋げます(積)。
lec01.inp
+11を加えてみましょう。(+は省略可)
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
20.
11 so
5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
-10 11
10
-11
10番の面の内側かつ11番の面の外側
Geometry
track_xz.eps
課題2の本当の答え
29
否定:C以外(not C)
領域を取り除く場合は否定(”#”)が使用できます。
lec01.inp
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
-10 11
10
-11
#を使った表現に書き直してみましょう。
同義
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
-10 #102
10
-11
10番の面の内側から
セル番号102の領域
を取り除く。
注) 通常は面番号を使って容れ物を作りますが、
“#”を使う場合はセル番号を指定してください。
*ただし、後述する()を使う場合、()は面番号で指定します。
Geometry
30
仮想空間の領域
粒子輸送を行うための仮想空間は、ある程度
広く設定しておく方が便利です。
球の半径を20cmから500cmに変えて
おきましょう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
500.
11 so
5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
-10 #102
10
-11
track_xz.eps
Geometry
31
課題3
左下のインプットにおいて、セル番号“103”の球が
右下の図のどの位置に描かれるか考えてみましょう。
lec01-3.inp(全員これを使う)
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
500.
11 so
5.
12 sz
11. 5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
-10 #102 #103
10
-11
-12
sz z r
XYZ座標系の座標
(0, 0, z)を中心と
した半径rの球
track_xz.eps
Geometry
32
課題3の答え合わせ
左下のインプットにおいて、セル番号“103”の球が
右下の図のどの位置に描かれるか考えてみましょう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
[Surface]
10 so
500.
11 so
5.
12 sz
11. 5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
座標(0, 0, 11)を
中心とした半径
5cmの球
-10 #102 #103
10
-11
-12
省略表現 sx, sy, sz があります。
汎用表現 s を用いる場合は、
XYZ座標と半径の入力が必要です。
Geometry
track_xz.eps
33
課題4
右の球の中心を(0,0,8)として左の球と重なるようにした
場合に、二重定義のエラーがでないようにしましょう。
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
球の中心を移動
-10 #102 #103
10
-11
-12
球が重なるので、
二重定義の体系エラー となる。
← 重なりの部分を領域102,103から除いて
新しい領域104を定義してみよう
Geometry
出て欲しい結果
track_xz.eps
34
課題4の答え合わせ
右の球の中心を(0,0,8)として左の球と重なるようにした
場合に、二重定義のエラーがでないようにしましょう。
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
104
1 -1.0
-10 #102 #103 #104
10
-11 12
-12 11
-11 -12
解答の一例
track_xz.eps
Geometry
35
和:AまたはB (A or B)
lec01.inp
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
104
1 -1.0
[Cell]
100
1 -1.0
101 -1
102
1 -1.0
103
1 -1.0
104
1 -1.0
-10
10
-11
-12
-11
#102 #103 #104
12
11
-12
同義
-10
10
-11
-12
-11
#(-11 : -12)
12
11
-12
和(OR)は、
“:”で表現する。
セル番号の否定(#)は便利ですが、展開できる場合
があります。スマートな記述を心がけましょう♪
*#で()を使う場合は面番号で指定します。
Geometry
36
玉ねぎ体系
input/onion.inp
[Material]
mat[1] 1H 2 16O 1
[Material]
mat[1] 1H 2 16O 1
[Surface]
11 so
5.
12 so
10.
13 so
15.
14 so
20.
15 so
25.
[Surface]
11 so
5.
12 so
10.
13 so
15.
14 so
20.
15 so
25.
[Cell]
101
1 -1.
102
1 -1.
103
1 -1.
104
1 -1.
105
1 -1.
106
1 -1.
[Cell]
101
1 -1.
102
1 -1.
103
1 -1.
104
1 -1.
105
1 -1.
106
1 -1.
-11
-12 #101
-13 #101 #102
-14 #101 #102 #103
-15 #101 #102 #103 #104
15
11
12
13
14
15
-11
-12
-13
-14
-15
同義
“#”の多用で複雑になる例←コンピュータも困る!!
Geometry
37
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
38
直方体の作り方
rppを使う
zmax
Z
Y
X
xmin
zmin
[Surface]
・
・
・
13 rpp xmin xmax ymin ymax zmin zmax
xmax
ymin
ymax
直方体を形作るためのx, y, zに関する最小値
と最大値を与える
(ただし、rppで定義できるのは直方体の面な
ので、[surface]セクションで定義する)
Geometry
39
課題5
rppを使って1辺が10cmの立方体を(0,0,-11)の
点を中心として定義しましょう。
• xとyに関して-5.0cmから5.0cmまで、zに関しては-16cm
から-6.0cmの範囲に配置する
• rppで定義した面の内側の領域を-(マイナス)で指定
する
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp *** *** *** *** *** ***
[Cell]
100
1 -1.0 -10 #102 #103 #104 ***
101 -1
10
102
1 -1.0 -11 12
103
1 -1.0 -12 11
104
1 -1.0 -11 -12
105
1 -1.0 ***
立方体を作ることができたか、
PHITSを実行して確認してみましょう。
Geometry
40
課題5の答え合わせ
rppを使って1辺が10cmの立方体を(0,0,-11)の
点を中心として定義しましょう。
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp -5. 5. -5. 5. -16. -6.
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105
101 -1
10
102
1 -1.0 -11 12
103
1 -1.0 -12 11
104
1 -1.0 -11 -12
105
1 -1.0 -13
Geometry
track_xz.eps
41
平面による領域の分割
y
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp -5. 5. -5. 5. -16. -6.
14 px 3.0
x
3
px:X軸に垂直な面
px 3.0
z
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105
101 -1
10
102
1 -1.0 -11 12
103
1 -1.0 -12 11
104
1 -1.0 -11 -12
105
1 -1.0 -13 -14
+側
-側
X=x0
X軸
平面の上下関係は+ or ー
赤字の部分を加えてPHITSを実行してみましょう。
Geometry
42
平面による領域の分割
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp -5. 5. -5. 5. -16. -6.
14 px 3.0
px:X軸に垂直な面
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105
101 -1
10
102
1 -1.0 -11 12
103
1 -1.0 -12 11
104
1 -1.0 -11 -12
105
1 -1.0 -13 -14
track_xz.eps
領域105: 面13の内側かつ
面14のマイナス側
(x=3.0cmの面よりプラス側
がカットされた)
他に、py, pzなどがあります。
平面のプラス側とマイナス側を意識して使いましょう
Geometry
43
円柱の作り方
円柱の作り方
XYZ座標系は固定されていると考える。
⇒ 円柱と平面の組み合わせによって
円柱の容れ物を作ります。
Geometry
44
課題6
円柱を作ってみましょう。
• [surface]と[cell]セクションに赤文字の部分を追加する
• 領域106は、領域100, 102, 103, 104, 105と重複部分あり
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp -5. 5. -5. 5. -16. -6.
14 px
3.0
15 cz
1.
16 pz
-19.
17 pz
19.
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105 #106
101 -1
10
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -13 -14 #106
106
1 -1.0 -15 16 -17
円柱を作ることが
cz(円柱側面)の場合は、 できたか、PHITS計算を
実行して確認してみましょう。
内側がー、外側が+
Geometry
45
課題6の答え合わせ
円柱を作ってみましょう。
lec01.inp
[Surface]
10 so
500.
11 so
5.
12 sz
8. 5.
13 rpp -5. 5. -5. 5. -16. -6.
14 px
3.0
15 cz
1.
16 pz
-19.
17 pz
19.
領域106: 半径1.0cm
高さ38cmの円柱
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105 #106
101 -1
10
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -13 -14 #106
106
1 -1.0 -15 16 -17
Geometry
track_xz.eps
46
Cell & Surface番号の整理
ある程度ジオメトリを作ったらcell & surface番号を
整理したほうがよい(ルールは自分次第)
lec01.inp
[Surface]
999 so
500.
11 so
5.
12 sz
8. 5.
101 px
-3.
111 pz
-19.
112 pz
19.
201 cz
1.
301 rpp -5. 5. -5. 5. -16. -6.
[Cell]
100
1 -1.0 -999 #102 #103 #104 #105 #106
101 -1
999
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -101 -301 #106
106
1 -1.0 111 -112 -201
例えば、
px, py, pz毎にまとめて、昇順に並べる
Geometry
47
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
48
SimpleGEO
• 多くのモンテカルロ計算コードに対応した体系作成用の
GUIインターフェイス
• CERNで開発されたフリーソフト (登録が必要*)
Simple GEO + PHITS sample (utility\simplegeo)
http://theis.web.cern.ch/theis/simplegeo/
SimpleGEO
49
SimpleGEOの使い方
1. 球や直方体、円柱等を配置して体系を作成する。
2. 作成した体系をPHITSのインプット形式([cell] と [surface] セクションのみ)に
“変換(convert)”する。ただし、マクロボディによるものとなる。
3. 変換して得られた結果をPHITSのインプットファイルに貼り付ける。
4. PHITSを実行。
5. 輸送計算で得られたタリーの出力結果を再度SimpleGEOに取り込むと、作成
した体系と輸送計算の結果を合わせて画像出力させることができる。
Examples of SimpleGEO + PHITS results
SimpleGEO
50
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
51
物質の追加方法
[material]セクションにおいて、
各物質の元素組成比や同位体比を加える。
(計算に使用する密度は[cell]セクションで与える)
• 金(密度: 19.32 g/cm3)
197Au 100
• 銅(密度: 8.93 g/cm3)
63Cu 0.6915
65Cu 0.3085
• 空気(密度: 1.20x10-3 g/cm3)
14N 8
16O 2
• ポリエチレン(密度: 0.9 g/cm3)
12C 2
1H 4
Geometry (How to add material)
52
課題7
円柱部分(セル番号106)の物質を銅に変えてみよう。
• 銅の同位体比は63Cu:65Cu = 0.6915 : 0.3085
• 密度は8.93 g/cm3
• [material]セクションで物質番号2の物質を定義し、
それを[cell]セクションで使用する
lec01.inp
[Material]
mat[1] 1H 2 16O 1
mat[2] ******
・・・ ・・・ ・・・ ・・・
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105 #106
101 -1
10
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -13 -14 #106
106
1 -1.0 -15 16 -17
物質(番号)によって
表示される色が変わり
ます。計算を実行して
確認してみましょう。
Geometry (How to add material)
53
課題7の答え合わせ
円柱部分(セル番号106)の物質を銅に変えてみよう。
lec01.inp
[Material]
mat[1] 1H 2 16O 1
mat[2] 63Cu 0.6915 65Cu 0.3085
金属は同位体比を
明示的に与える必
要がある
・・・ ・・・ ・・・ ・・・
[Cell]
100
1 -1.0 -10 #102 #103 #104 #105 #106
101 -1
10
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -13 -14 #106
106
2 -8.93 -15 16 -17
track_xz.eps
Geometry (How to add material)
54
物質を入れない(真空)
lec01.inp
[Cell]
100
0
-10 #102 #103 #104 #105 #106
101 -1
10
102
1 -1.0 -11 12 #106
103
1 -1.0 -12 11 #106
104
1 -1.0 -11 -12 #106
105
1 -1.0 -13 -14 #106
106
2 -8.93 -15 16 -17
領域に物質を入れない場合
(真空にする場合)は、物質(番号)
を0にして密度の値は与えません。
track_xz.eps
Geometry (How to add material)
55
体系の確認(3次元)
作成した体系を[t-3dshow]を使って3次元的に
確認してみましょう。
lec01.inp
[Parameters]
icntl = 11
file(6) = phits.out
[t-3dshow]を使って
作成した体系を
確認する時の値
・・・ ・・・ ・・・ ・・・
[ T - 3Dshow ]
output = 3
・・・ ・・・ ・・・ ・・・
3dshow.eps
[t-3dshow]の使い方については基礎実習(II)にて説明します。
Geometry (3D plot)
56
物質の色を変える
lec01.inp
[Mat
mat
1
2
Name Color]
name
color
Water
pastelblue
Copper darkred
物質(番号)毎に
表示する色と名称を
指定できます。
3dshow.eps
Geometry (Change material colors)
57
登録された色名称
Angelによる画像出力の場合
Geometry (Change material colors)
58
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
59
入力ファイルに必要なもの
• PHITSコードによるシミュレーション計算は、
コンピュータ上(バーチャルな世界)に3次元
の実験体系を構築し、体系内で発生した放
射線の振る舞いを観察するものである。
⇒ ① 3次元体系
② 線源
③ 検出器
Source
[Source]
define source
60
線源の種類
•
放射性同位元素(RI)使用施設
→点線源(放射)
• 加速器施設
→特定の方向をもったペンシル状或いはブロードなビーム
→コーン状の線源
• 放射性廃棄物、内部被ばく
→体積等方線源
• 宇宙線、外部被ばく
→面状の等方線源
Source
61
線源の設定に必要なもの
• 放射線の発生位置
← 形状によって指定方式が異なります。
• 放射線のエネルギー
← 単色、スペクトル
• 放射線の種類(線種)
← 中性子、ガンマ線、陽子線、重粒子、など
• 放射線の方向
← 等方、特定の方向、コーン状、など
Source
62
線源の形状
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 0.
= 0.
= 0.
= 150
[Source]
: 放射線の発生源を定義する。
線源の設定に必要なものは?
s-type: 線源形状の種類
= 1 単色、円柱(ペンシル)
円柱を定義するときに必要な情報は?
Source
63
円柱形状線源
PHITSの基本軸は +Z であることに注意
Z-axis
r0: 外半径
(r1: 内半径)
Zの上限座標: (z1)
XY平面上の原点: (x0, y0)
Zの下限座標: (z0)
Source
64
円柱形状線源の応用
Z-axis
PHITSの基本軸は +Z であることに注意
Z-axis
Z-axis
z0 = z1
例)
z0 = 5.0
z1 = 5.0
円柱形状線源
円面状線源
Source
z0 = z1
r0 = 0.0
点線源
65
課題8
輸送計算を実行させてみましょう。
lec01-8.inp(全員これを使う)
[Parameters]
icntl = 8
0
file(6) = phits.out
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 0.
= 0.
= 0.
= 150
輸送計算
体系を
を行う
見る
中心位置が原点
(0,0,0)の点線源
Source
66
課題8の答え合わせ
輸送計算を実行させてみましょう。
lec01-8.inp(全員これを使う)
[Parameters]
icntl = 8
0
file(6) = phits.out
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 0.
= 0.
= 0.
= 150
輸送計算
を行う
中心位置が原点
(0,0,0)の点線源
track_xz.eps
Source
67
課題9
半径が1cmの円面状線源に変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 0.
= 0.
= 0.
= 150
Source
68
課題9の答え合わせ
半径が1cmの円面状線源に変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 1.
= 0.
= 0.
= 150
ビームの半径が1cm
(ビーム幅2cm)
track_xz.eps
Source
69
線源のエネルギー
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 1.
= 0.
= 0.
= 150
s-type = 1
単色、円柱(ペンシル)
e0: エネルギー(MeV/u)
単位は “MeV/u” s-type = 4
エネルギー分布有、
円柱(ペンシル)
エネルギー分布を与える
(lecture\advanced\sourceA
もしくはマニュアル4.3.15参照)
Source
70
粒子の指定
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 1.
= 0.
= 0.
= 150
proj: 線種
‘symbol’または
‘kf-code’で線種
を指定します。
137Csなどの放射性核種を模
擬する場合は、直接
‘photon’等を指定する必要
があるのでご注意ください。
Source
71
課題10
線源粒子を中性子にして、そのエネルギーを
100MeVに変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= proton
= 1.0
= 1.
= 0.
= 0.
= 150
Source
72
課題10の答え合わせ
線源粒子を中性子にして、そのエネルギーを
100MeVに変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= neutron
= 1.0
= 1.
= 0.
= 0.
= 100
陽子と比べて中性子は物質中を
通過しやすい。
track_xz.eps
Source
73
線源の放出方向(極角)
PHITSの基本軸は +Z であることに注意
Z-axis
dir = 1
dir: +Zからの方向余弦
q度
※ 特殊
dir = all
等方線源
dir = cos q
※ 極座標系の表現
Source
74
線源の放出方向(方位角)
PHITSの基本軸は +Z であることに注意
Z-axis
phi: +Xからの方位角(degree)
q度
dir = cos q, phi = f
Y-axis
f度
X-axis
※ 極座標系の表現
Source
75
線源の広がり
dom: 立体角範囲(degree)
dom = d
d度
Source
76
線源パラメータのまとめ
方向に関するパラメータ
dir, phi, domの関係
Source
77
課題11
XYZ座標(0, 0, 10)を中心とする点等方線源に
変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= neutron
= 1.0
= 1.
= 0.
= 0.
= 100
Source
78
課題11の答え合わせ
XYZ座標(0, 0, 10)を中心とする点等方線源に
変えてみよう。
lec01.inp
[Sou
s-type
proj
dir
r0
z0
z1
e0
rce]
=1
= neutron
= all
= 0.
= 10.
= 10.
= 100
s-type=1の場合、dir=allで
等方線源となる。
track_xz.eps
Source
79
実習内容
• PHITSの入力ファイルについて
• 3次元体系
–
–
–
–
–
基本的な定義の方法
領域を定義する方法
直方体、円柱の定義方法
SimpleGEO
物質の追加方法
• 線源
• まとめと宿題
Contents
80
まとめ
• PHITSのインプットファイルは“3次元体系”と “線源”及び
“検出器(タリー)”に関するものが主となります。
• “3次元体系”の作成は,物質の定義([material]セクショ
ン),面の定義([surface]セクション)及び容器の定義
([cell]セクション)を用いて行います。
• “線源”の設定には、その形状や線種、エネルギーや方向
を決める必要があります。
• “検出器”は,3次元体系の確認や,PHITSシミュレーショ
ンから物理量(フラックス,発熱量など)を引き出すために
使います。
検出器についてはphits-lec02-jp.pptを用いた
基礎実習(II)で更に学んでいただきます。
Summary
81
宿題
• 半径10cm、長さ50cmの水と、それを取り
囲む真空の空間を作る
• 体系がきちんと作られていることを確認する
(icntl = 8)
• ビーム半径2.5 cm、 290 MeV/uの陽子線
をR-Z体系の左端から撃ち込む
• 輸送計算を実行させ,粒子の飛跡を観察す
る(icntl = 0)
phits\lecture\basic\homework\homework1.inpを
参考にインプットを作成する
Homework
82
宿題(解答例)
• Z軸に沿った0~50cmまで,半径10cmの円柱の水
• Z=-10cmから発生する半径2.5cmの290MeV陽子ビーム
• 入射粒子を変えてみたらどうなるか?(例えば12C)
Homework
83
ダウンロード

基礎実習1:体系及び線源の定義