活動領域形成理論・フレア発生理論と Solar-­‐C計画への期待 鳥海 森1, 草野 完也2,3 1. 国立天文台, 2. 名古屋大学, 3. JAMSTEC 日本天文学会2014年秋季年会 (2014 Sep. 13) 1. イントロダクション ì  そもそも「活動領域」とは? SDO/AIA+HMI ì 
ì 
磁場の強い領域。しばしば黒点を含む 太陽フレア・CMEによって莫大なエネルギーを放出する 1. イントロダクション ì  そもそも「活動領域」とは? SDO/AIA SOHO/LASCO C3 Lin et al. (2005) ì 
ì 
磁場の強い領域。しばしば黒点を含む 太陽フレア・CMEによって莫大なエネルギーを放出する 1. イントロダクション ì  活動領域の形成過程:浮上磁場 ì  表面磁場データ(SDO/HMI マグネトグラム:5日間) 白:正極 黒:負極 1. イントロダクション ì  活動領域の形成過程:浮上磁場 ì  太陽内部から磁束が浮上することで形成 (Parker 1955) 黒点 浮上磁場モデル (Zwaan 1985) 1. イントロダクション ì  活動領域の形成過程:浮上磁場 表面層による ì  太陽内部から磁束が浮上することで形成 (Parker 1955) •  強いブレーキ効果 •  磁場の変形 •  水平流の発生 「2段階浮上」モデル (Toriumi & Yokoyama 2012 ほか) 1. イントロダクション ì  活動領域の形成過程:浮上磁場 •  活動領域 表面層による ì  太陽内部から磁束が浮上することで形成される (Parker 1955) •  強いブレーキ効果 ü  浮上磁場により形成される •  磁場の変形 ü  フレア・CMEを生じる特に活動的な領域 •  水平流の発生 •  Solar-­‐C 計画の重要な科学目標 ü  「彩層磁場」観測 •  活動領域・フレア理論における2つの「彩層磁場」 ü  フレアトリガ磁場 ü  小規模な磁束消滅現象 「2段階浮上」モデル (Toriumi & Yokoyama 2012 ほか) 2. フレアトリガ磁場 ì  シミュレーション研究 ì  シアしたコロナ磁場中にトリ
ガ磁場が出現することでフレ
アが発生 ì  低層大気 (〜彩層高度) の磁気
リコネクションによってフ
ラックスロープが形成 大局的な磁場構造 (コロナアーケード) 局所的な磁場構造 (フレアトリガ磁場) Kusano et al. (2012) 2. フレアトリガ磁場 大局的な磁場構造 (コロナアーケード) アーケード磁場のシア角 ì  シミュレーション研究 ì  低層大気 (〜彩層高度) の磁気
The Astrophysical Journal, 760:31 (9pp), 2012 November 20
リコネクションによってフ
ラックスロープが形成 ì  トリガ磁場の方位角によって
フレア発生の成否が決定 Kusano et al
◯ ◯ × × Figure 2. Summary of simulations for Be = 2, re = 0.13, τe = 20, ve = 6.7 × 10−3 , ye = 0 on parameter space of ϕe and θ0 . Different marks (squares and diamonds
represent the types of dynamics, and contours show the maximum total kinetic energy produced by eruption (Ek ). Squares indicate that no eruption has occurred a
the corresponding parameter; diamonds indicate the appearance of eruptions at each parameter. Pink and blue diamonds indicate eruption-induced reconnection an
reconnection-induced eruption processes, respectively. The yellow diamond corresponds to a special case in which the potential field collapses because of reconnectio
with the small-scale injected field, which exhibits a completely antiparallel polarity compared with the initial potential field. The right-hand and top subsets illustrat
the initial sheared field and orientation of injected small bipole field, respectively, in which white and black areas indicate positive and negative polarity and arrow
represent the horizontal component of the magnetic field.
トリガ磁場の方位角 局所的な磁場構造 (フレアトリガ磁場) Kusano et al. (2012) We detected a clear difference in the morphologies of magnetic fields between cases triggered by OP- and RS-type configurations, represented in Figure 2 by pink and blue diamonds,
respectively. The typical dynamics of eruption caused by the
OP-type field are explained in the following steps, as shown
Figures 4(a)–(c)) and forms a current sheet (red surface denote
by c in Figure 4(b)) on the border between them. Magneti
reconnection slowly proceeds on this current sheet, and th
sheared field is removed from the center to the sides of RS
field region (d and d′ in Figure 4(b)). Because of the reductio
2. フレアトリガ磁場 ì  シミュレーション研究 ì  低層大気 (〜彩層高度) の磁気
The Astrophysical Journal, 760:31 (9pp), 2012 November 20
リコネクションによってフ
フレアトリガの方位角? ラックスロープが形成 ↓ ì  トリガ磁場の方位角によって
彩層の3次元磁場観測によって フレア発生の成否が決定 より精度の高い検証が可能に Kusano et al
大局的な磁場構造 (コロナアーケード) アーケード磁場のシア角 ◯ ◯ × × Figure 2. Summary of simulations for Be = 2, re = 0.13, τe = 20, ve = 6.7 × 10−3 , ye = 0 on parameter space of ϕe and θ0 . Different marks (squares and diamonds
represent the types of dynamics, and contours show the maximum total kinetic energy produced by eruption (Ek ). Squares indicate that no eruption has occurred a
the corresponding parameter; diamonds indicate the appearance of eruptions at each parameter. Pink and blue diamonds indicate eruption-induced reconnection an
reconnection-induced eruption processes, respectively. The yellow diamond corresponds to a special case in which the potential field collapses because of reconnectio
with the small-scale injected field, which exhibits a completely antiparallel polarity compared with the initial potential field. The right-hand and top subsets illustrat
the initial sheared field and orientation of injected small bipole field, respectively, in which white and black areas indicate positive and negative polarity and arrow
represent the horizontal component of the magnetic field.
トリガ磁場の方位角 局所的な磁場構造 (フレアトリガ磁場) Kusano et al. (2012) We detected a clear difference in the morphologies of magnetic fields between cases triggered by OP- and RS-type configurations, represented in Figure 2 by pink and blue diamonds,
respectively. The typical dynamics of eruption caused by the
OP-type field are explained in the following steps, as shown
Figures 4(a)–(c)) and forms a current sheet (red surface denote
by c in Figure 4(b)) on the border between them. Magneti
reconnection slowly proceeds on this current sheet, and th
sheared field is removed from the center to the sides of RS
field region (d and d′ in Figure 4(b)). Because of the reductio
2. フレアトリガ磁場 ì  シミュレーションと観測の比較 ì  NOAA 11158におけるフレアトリガ (a)
N1
ì  幅広い時間・空間スケール N2
ì  全てがフレアに関与 活動領域 (全体) ~100 Mm
スケール 形成時間 15万 km 数日 コロナアーケード (大局的磁場) 5万 km 1-­‐2 日 フレアトリガ磁場 (局所的磁場) 5,000 km 4-­‐5 時間 (1,000 km以下
の磁極が合体) P2
P1
Toriumi et al. (2013) (b)
N1
P2
~25 Mm
(c)
N1
P2
~10 Mm
3. 小規模な磁束消滅現象 ì  浮上磁場シミュレーション ì  シミュレーションの「問題点」 上
空
対
流
層
Toriumi & Yokoyama (2012) 3. 小規模な磁束消滅現象 ì  浮上磁場シミュレーション ì  シミュレーションの「問題点」
↓ 磁束管の大半が表面下にとどまる ì  表面付近の磁力線は曲がりく
ねっている ì  凹んだ部分にプラズマが引っ
かかってしまう 上
空
対
流
層
Toriumi & Yokoyama (2012) 3. 小規模な磁束消滅現象 strong evidence in favor of a multistep flux emergence and
!-loop formation process: once the subphotospheric largescale flux tubes becomes flattened and stop their large-scale
emergence, small-scale undulations develop and emerge because of the Parker instability. Then magnetic reconnection
proceeds at low altitudes in BP separatrices, allowing the release of the dense material that prevents the emergence of the
whole flux tube, so that all the small-scale emerged flux tubes
sequentially rejoin above the photosphere, forming a largescale loop, which then becomes free to expand in the corona
in the form of AFSs, which then turn into standard coronal
loops.
So they pro
reconnection
the other on
were probab
in apparentl
In this pa
FGE, and we
EBs in allow
ì  浮上磁場シミュレーション ì  「解決策」:磁気リコネクション Pariat et al. (2004) Fig. 9.—Sketch of the field lines overlying the emerging flux.
「抵抗性浮上」モデル Toriumi et al. (2012) Fig. 10.—H
secutive BPs w
3. 小規模な磁束消滅現象 strong evidence in favor of a multistep flux emergence and
!-loop formation process: once the subphotospheric largescale flux tubes becomes flattened and stop their large-scale
emergence, small-scale undulations develop and emerge because of the Parker instability. Then magnetic reconnection
proceeds at low altitudes in BP separatrices, allowing the release of the dense material that prevents the emergence of the
whole flux tube, so that all the small-scale emerged flux tubes
sequentially rejoin above the photosphere, forming a largescale loop, which then becomes free to expand in the corona
in the form of AFSs, which then turn into standard coronal
loops.
So they pro
reconnection
the other on
were probab
in apparentl
In this pa
FGE, and we
EBs in allow
ì  浮上磁場シミュレーション ì  「解決策」:磁気リコネクション ↓ ì  凸型の磁力線同士が低層大気
でリコネクション Pariat et al. (2004) Fig. 9.—Sketch of the field lines overlying the emerging flux.
「抵抗性浮上」モデル Toriumi et al. (2012) Fig. 10.—H
secutive BPs w
3. 小規模な磁束消滅現象 ì  浮上磁場シミュレーション ì  「解決策」:磁気リコネクション ↓ ì  凸型の磁力線同士が低層大気
でリコネクション ì  プラズマを下方へ排出し磁場
が上空へと浮上 strong evidence in favor of a multistep flux emergence and
!-loop formation process: once the subphotospheric largescale flux tubes becomes flattened and stop their large-scale
emergence, small-scale undulations develop and emerge because of the Parker instability. Then magnetic reconnection
proceeds at low altitudes in BP separatrices, allowing the release of the dense material that prevents the emergence of the
whole flux tube, so that all the small-scale emerged flux tubes
sequentially rejoin above the photosphere, forming a largescale loop, which then becomes free to expand in the corona
in the form of AFSs, which then turn into standard coronal
loops.
Pariat et al. (2004) Fig. 9.—Sketch of the field lines overlying the emerging flux.
「抵抗性浮上」モデル Toriumi et al. (2012) So they pro
reconnection
the other on
were probab
in apparentl
In this pa
FGE, and we
EBs in allow
Fig. 10.—H
secutive BPs w
3. 小規模な磁束消滅現象 strong evidence in favor of a multistep flux emergence and
!-loop formation process: once the subphotospheric largescale flux tubes becomes flattened and stop their large-scale
emergence, small-scale undulations develop and emerge because of the Parker instability. Then magnetic reconnection
proceeds at low altitudes in BP separatrices, allowing the release of the dense material that prevents the emergence of the
whole flux tube, so that all the small-scale emerged flux tubes
sequentially rejoin above the photosphere, forming a largescale loop, which then becomes free to expand in the corona
in the form of AFSs, which then turn into standard coronal
loops.
So they pro
reconnection
the other on
were probab
in apparentl
In this pa
FGE, and we
EBs in allow
ì  浮上磁場シミュレーション ì  「解決策」:磁気リコネクション ì  小規模現象が、活動領域の大
規模な成長に寄与している可
能性 ì  光球・彩層での観測的検証が
重要な現象 Pariat et al. (2004) Fig. 9.—Sketch of the field lines overlying the emerging flux.
「抵抗性浮上」モデル Toriumi et al. (2012) Fig. 10.—H
secutive BPs w
3. 小規模な磁束消滅現象 ì  関連する観測研究 ì  「ひので」、IRIS、SDO衛星による浮上磁場領域の観測 NOAA 11974 3. 小規模な磁束消滅現象 ì  関連する観測研究 ì  ひので、IRIS、SDO衛星による浮上磁場領域の観測 NOAA 11974 3. 小規模な磁束消滅現象 ì  関連する観測研究 IRIS 1330 ì  ひので、IRIS、SDO衛星による浮上磁場領域の観測 HMI 光球磁場 光球 3. 小規模な磁束消滅現象 ì  関連する観測研究 ì  ひので、IRIS、SDO衛星による浮上磁場領域の観測 Mg II kスペクトル • 
• 
キャンセレーション領域 エラーマンボム的 4. まとめと課題 ì  まとめ ì  フレアトリガ磁場 ì 
ì  コロナ磁場に局所磁場が突入 ì  低層大気 (〜彩層高度)で磁気
リコネクション ì  局所磁場の角度によってフレ
ア発生の可否が決定される 小規模な磁束消滅現象 ì  問題点:従来シミュレーショ
ンでは磁場が浮上しない ì  解決策:低層大気における小
規模な磁場リコネクション ì  小規模イベントが大規模な活
動領域形成に寄与 これらは「彩層磁場」観測の格好のテーマ 4. まとめと課題 ì  課題 ì  スペクトルの複雑さ ì  スペクトルのみから状況を把握する
のは困難 ì  IRIS:輻射磁気流体シミュレーション
によるモデル大気を提供 l  静穏領域:良さそう l  活動領域:恐らく再現不可能? ì  Solar-­‐Cでは「磁場」も入ってくる ì  スペクトルの「解釈」 ì  輻射磁気流体モデリング l  国産?外注? Mg II kスペクトル • 
• 
• 
キャンセレーション領域 強いブルーシフト(~100 km/s)? 視線方向の重ね合わせ効果? Thank you for your attention! Appendix (a) Jet 1
ì  データ駆動型シミュレーション ì  シミュレーションの境界条件 ì  現状:光球の3次元磁場データを
利用して上空の磁場を推定 ì  Cheung et al. (in prep):ジェットを
生じた周囲の磁場環境を再現、
IRIS観測と比較 ì 
彩層観測のメリット ì  光球磁場・彩層磁場観測から磁場
勾配を計算 → 電流場を推定可能 ì  密度・エネルギーフラックスなど
も観測できればシミュレーション
の精度を向上できる (b
Homologous Helical Jets
(a) Bz at z = 0 Mm
(c) Jet 3
(a) M
(d
Figure 5. Total intensity and mean Doppler velocity of the four jets as computed from IRIS obse
four jets, there is a tendency for northern edge to be blueshifted while the southern edge is redshif
four jets are helical with the same (negative) sign of kinetic helicity.
started to investigate how multiple jets can be emitted
from the same source region. From a 3D MHD simulation of flux emergence, Archontis et al. (2010) reported
that a series of reconnection events between the emerging flux system and ambient coronal field led to recurrent
jets. Moreno-Insertis & Galsgaard (2013) performed a
similar numerical experiment and found a succession of
eruptions, some of which have physical properties that
resembled the ‘standard’ type of jet while others were
miniature flux rope ejections that that may be associated
with so-called blowout jets (Moore et al. 2010). While
Bz at z =(2013)
4 Mm paper mentions
the Moreno-Insertis &(b)
Galsgaard
that the erupting flux ropes in the simulation seem to
Cheung et al. (2014, in prep) rotate as if they were c
possible helical motion
studied.
Recently, Fang et al.
performing 3D MHD si
emerging into a coronal
field. They included ma
duction in their model
mechanism for energy
heated to transition re
(b) M
They reported the exist
of plasma
at
a
broad
r
Figure 10. Jet-like m
spheric
(withtoU0coronal).
= 1.1 km Du
s 1
a static grid of points.
flux rope structure. At
set of points reveal a se
the background incline
z = 0 from the parasiti
(a)
Hinode/SOT Ca intensity 13-Feb-2011 17:35 UT
600
(a)
PIL
Appendix Y [pixels]
500
400
300
200
100
Shear angle
0
(b) Reversed shear type
configuration. Both angles are measured counterclockwise from the axis normal
to the PIL (thick arrows).
シミュレーションの改良 In this paper, we present a detailed event analysis of the
M6.6ì 
classPIL上のトリガを flare that occurred on 2011 February 13 in NOAA
ì 
AR 11158, which was briefly reported in Kusano et al. (2012).
l  observational
複数箇所、ランダムに挿入 Here, we use
data of this AR taken by multiple
spacecraft,l 
along浮上磁場シミュレーション結果な
with the nonlinear force-free field (NLFFF)
extrapolation and numerical results of a flare simulation. The
どを利用 goals of this paper
are to understand: (1) the overall development
of the magnetic fields in AR 11158 before the M6.6 flare, (2) the
l  etc...
formation process
of the flare-triggering region that initiates the
M flare, and (3) the evolution of the M flare in the main phase.
ì  of誰が「犯人」か事前に推定できる
The rest
the paper proceeds as follows. In Section 2, we
introduce the
observations of AR 11158 and the data reduction
ように
processes. The obtained magnetic field configurations and the
formation of the flare trigger are shown in Sections 3 and 4,
respectively. Then, in Section 5, we compare the observational
400
600
800
1000
1200
(b)
500
Y [pixels]
200
Hinode/SOT Na Stokes-V/I 13-Feb-2011 17:30 UT
600
400
300
200
100
0
0
GOES SXR flux [W m-2 ]
ì  フレアトリガの特定 ì  複数の「容疑者」 ì  実際の活動領域には多数のフレア
PIL
トリガ的な磁場構造が存在 Azimuthal angle
ì  現状「真犯人」の発見は「事件」
Figure 1. Schematic illustration of the two different types of flare onset
suggested by が発生してから Kusano et al. (2012): (a) opposite polarity (OP) type and (b)
reversed shear (RS) type. In both cases, coronal arcade fields lying over the PIL
and the local triggering field (emerging flux) are shown by thin curved arrows,
ì  観測視野が狭いため、事前にある
while photospheric magnetic fields are indicated by lighter (positive) and darker
(negative) hatches. The shear angle of the overlying arcade and the azimuthal
程度「容疑者の絞り込み」が必要 angle of the triggering field are the parameters that characterize the magnetic
0
10-4
200
(c)
400
600
X [pixels]
800
1000
1200
M6.6
10-5
10-6
10-7
12:00
15:00
18:00
21:00
Start time: 13-Feb-2011 12:00 UT
00:00
Figure 2. M6.6 class flare in NOAA AR 11158. (a) Ca intensity map at 17:35 UT
and (b) Na Stokes-V/I image at 17:30 UT on 2011 February 13, observed by
Hinode/SOT. (c) GOES-15 soft X-ray flux in the 1.0–8.0 Å channel (1 minute
cadence).
(A color version of this figure is available in the online journal.)
flare broke out around 17:30 UT on February 13, as can be
seen in the Geostationary Operational Environmental Satellite
(GOES) soft X-ray flux (1.0–8.0 Å channel) in Figure 2(c). The
ダウンロード

活動領域形成理論・フレア発生理論と Solar