教育課程研究集会資料
新学習指導要領の手引(数学科)
徳島県立総合教育センター
手引の構成
Ⅰ 改訂の趣旨
1 改善の基本方針 2 改善の具体的事項
Ⅱ 改訂の要点
1 目標について 2 内容について
3 「指導計画の作成と内容の取扱い」に関する改善
Ⅲ 具体的な改善事項
1 目標について 2 内容について
Ⅳ 指導計画の作成と内容の取扱い
Ⅴ 移行措置期間中の取扱い
Ⅵ Q&A
Ⅱ 改訂の要点
1 目標について
1. 教科の目標
①数学的活動を通して,数量や図形などに関
する基礎的な概念や原理・法則についての理
解を深め,数学的な表現や処理の仕方を習
得し,事象を数理的に考察し ②表現する能力
を高めるとともに,数学的活動の楽しさや
③数学のよさを実感し,それらを ④活用して
考えたり判断したりしようとする態度を育てる。
目標の改善を図る
Ⅱ 改訂の要点
1 目標について
①数学的活動を通して
目標の冒頭に付加し,目標全体にかける
生徒が目的意識をもって主体的に数学的活動に取り組む
教師が適切に指導を行うことにより目的を実現する
学習指導の進め方の基本的な考え方を示す
Ⅱ 改訂の要点
1 目標について
・・・ ②表現する能力を高めるとともに,・・・
考える力と表現する能力は互いに補完し合う関係
数学的に表現し,伝えたり学び合うことを重視する
・・・, ③数学のよさを実感し,それらを・・・
数学的な見方や考え方のよさを実感して数学の学
習に意欲的に取り組むことの大切さを示す
Ⅱ 改訂の要点
1 目標について
・・・ ④活用して考えたり判断したり ・・・
生徒が数学を活用して考えたり判断する機会を設け,
その必要性や有用性を実感を伴って理解することの
重要性を示す
1. 教科の目標
①数学的活動を通して,数量や図形などに関する基礎的な概
念や原理・法則についての理解を深め,数学的な表現や処
理の仕方を習得し,事象を数理的に考察し ②表現する能力
を高めるとともに,数学的活動の楽しさや ③数学のよさを
実感し,それらを ④活用して考えたり判断したりしようとする
態度を育てる。
Ⅱ 改訂の要点
2 内容について
(1) 領域構成
・3領域から,「数と式」,「図形」,「関数」
「資料の活用」(新設)の4領域に改める
(2) 数学的活動について
・各学年の内容に数学的活動を位置付けた
ア‥数や図形の性質などを見いだす活動
イ‥数学を利用する活動
ウ‥数学的に説明し伝え合う活動
Ⅱ 改訂の要点
2 内容について
(3)具体的な内容について
・義務教育としての国際的な通用性を踏まえ,
一部の内容の指導時期を改めた
解説p8
(4) 内容の示し方について
・生徒が身に付けるべき能力を次第に高めていく
ため「培う→養う→伸ばす」という表現を用いる
・習得すべき内容は,「~を知ること」,「~を理解
すること」という表現を用いる
Ⅱ 改訂の要点
3 「指導計画と内容」の改善について
(1)学び直しの機会の設定
・生徒の理解を深めたり拡げたりするために有効な
場合は,積極的に学び直しの機会を設ける
(2)数学的活動の一層の充実(機会の設定)
・活動を楽しみ,学習する意義や必要感の実感
・見通しをもって活動に取り組み,振り返る
・活動の成果を共有する
(3)課題学習の位置付け
・各領域の内容を統合して見いだした課題を
解決する学習として指導計画に位置付ける
Ⅲ 具体的な改善事項
1 目標について
2.学年の目標
・「数学科の目標」を具体化したものが
「学年の目標」であり,その目標の達成
のために「内容」がある
・「学年の目標」に明記していなくても,「数学科の目標」
にある内容は,いずれの学年においても大切
(数学的活動の楽しさ,数学のよさ,活用・判断・態度)
・「内容」の指導は,「数学科の目標」「学年の目標」
領域相互の関連を合わせて考えることが必要
・数学的活動に取り組む機会を設けることが,各領域の
目標を達成することと関わっている
Ⅲ 具体的な改善事項
2 内容について
(2) 数学的活動について
・生徒が目的意識をもって主体的に取り組む
数学にかかわりのある様々な営み
○ 生徒の発達段階や学習内容に配慮し,第1学年と第2,3学
年の二つに分けて示す
【ア】 1年‥「見いだす」ことに重点を置く
2,3年‥「発展させる」ことまで視野に入れ,質的な高まり
【イ】 1年‥範囲を「日常生活」とする
2,3年‥範囲を「社会」にまで広げる
【ウ】 1年‥「自分なりに」することに重点を置く
2,3年‥「根拠を明らかにし筋道立てて」説明し伝え合う
ところまで質的な高まりを期待している
※どの活動に焦点を当てて指導するのかを明らかにする
Ⅲ 具体的な改善事項
2 内容について
(3) 各学年の内容の改善
「A数と式」
※言語活動の充実が重視されたことを踏まえ,「表現したり読み
取ったりしたことを基に,説明したり伝え合ったりすること」の重
要性が強調された
【第1学年】 ・(1)エ 具体的場面における表現や処理(新規)
・内取(1) 数の集合と四則計算の可能性(高「数Ⅰ」)
・(2)エ 文字を用いた式による表現や読み取り(新規)
・内取(2) 大小関係を不等式を用いて表す(高「数Ⅰ」)
・内取(3) 簡単な比例式を解くこと(新規)
Ⅲ 具体的な改善事項
2 内容について
【第2学年】 ・(1)ア 簡単な整式の加法・減法,単項式の乗法・除
法(学び直しの機会を設ける)
・(1)イ 文字を用いた式でとらえ説明できること(新規)
・(2)ウ 連立二元一次方程式を解くことと活用
(学び直し機会を設ける)
【第3学年】 ・(1)ウ 具体的な場面での平方根を用いた処理(新規)
・(2)ウ 文字を用いた式による数量関係の説明(新規)
・(3)ウ 解の公式を用いた二次方程式の解法
(高「数Ⅰ」)
・(3)エ 二次方程式の活用(新規)
・内取(3) 因数分解や平方変形による二次方程式の
解法
Ⅲ 具体的な改善事項
2 内容について
「B図形」
【目標】 ・すべての学年目標に「観察,操作や実験などの活動を
通して」という文言が入る
(観察,操作,実験などの活動を通して,図形の学習を行うことを
ねらいとする)
(観察,操作,実験などが重視する活動の例示である)
【第1学年】 ・(1)ア 基本的な作図とその活用
・(1)イ 平行移動,対称移動,回転移動の理解と
2つの図形の関係を調べる(新規)
・(2)イ 空間図形の平面上への表現と読み取り(新規)
・内取(5) 投影図(新規)
・(2)ウ 扇形の弧の長さと面積,基本的な柱体,錐体
球の表面積と体積(高「数Ⅰ」)
Ⅲ 具体的な改善事項
2 内容について
【第2学年】 ・(2)ウ 図形の性質の証明を読んで新たな性質を
見出す
・数学的な推論
【第3学年】 ・(1)エ 相似な図形の相似比と面積比及び体積比
(高「数Ⅰ」)
・(2)ア 円周角と中心角の関係の意味と証明(中2)
・内取(4) 円周角の定理の逆(新規)
・(3)ア 三平方の定理の意味と証明
・(3)イ 三平方の定理の活用
Ⅲ 具体的な改善事項
2 内容について
「C関数」
※具体的な事象の中から2つの数量を取り出し,それらの変化や
対応を調べることを通して,関数関係を見いだし表現し,考察す
る能力を3年間を通して徐々に高めていく
【第1学年】 ・(1)ア 関数関係の意味を理解すること(新規)
・(1)オ 比例・反比例を用いて具体的な事象をとらえ
説明すること(新規)
【第2学年】 ・(1)エ
【第3学年】 ・(1)ウ
一次関数を用いて具体的な事象をとらえ
説明すること
関数y=ax2 を用いて具体的な事象をとらえ
説明すること
・(1)エ いろいろな事象と関数(新規)
Ⅲ 具体的な改善事項
2 内容について
「D資料の活用」
※領域の名称を「資料の活用」としたのは、整理した結果を用いて
考えたり判断したりすることの指導を重視することを明示
【第1学年】 ・(1)イ 資料の傾向をとらえ説明すること(新規)
・内取(6) 誤差や近似値,a×10nの形の表現
【第2学年】
・(1)イ 確率を用いた不確定な事象の説明(新規)
【第3学年】
・(1)ア 標本調査の必要性と意味(新規)
・(1)イ 標本調査による母集団の傾向の説明(新規)
Ⅳ 指導計画の作成と内容の取扱い
1 指導計画作成上の配慮事項
(1)各学年で指導する内容について
・学年にまたがって指導順序を変更したり,前の学年の
復習を取り入れたり,後の学年の内容を一部加えるなど,
弾力的な指導が行える
(2)学び直しの機会を設定することについて
・既に指導した関連する内容を意図的に取り上げ,学び
直しの機会を設定する
※単に復習の機会を増やすことだけを意味するのでは
なく,適切に位置付ける必要がある
(3)道徳の時間などとの関連について
・数学科の目標と道徳教育との関連を明確に意識し,
適切な指導を行う
・道徳教育の要としての道徳の時間の指導との関連を
考慮する必要がある
Ⅳ 指導計画の作成と内容の取扱い
2 内容の取扱いの配慮事項
(1)用語・記号
・用語・記号が具体的な内容から離れ,形式的な指導に
陥ることのないようにする
・各学年段階で示した用語・記号は,その学年で指導が
完結して「用いることができるようにする」というのでは
なく,その学年から使用が始まることを示す
・継続して指導し,用いる能力を次第に伸ばすよう配慮する
(2)コンピュータや情報通信ネットワークなどの活用
・「D資料の活用」だけでなく,他の領域においても指導に
用いることができるか検討して,積極的な活用を図る
※「適切に活用し」とは,インターネットなどの活用において,
メディア・リテラシーの育成に配慮する必要があることを
意図する。
Ⅳ 指導計画の作成と内容の取扱い
3 数学的活動の配慮事項
(1)数学を学習する意義や必要性の実感
・数学的活動の楽しさは,単に楽しく活動するという側面
だけでなく,知的成長による楽しさという側面も意味する
・生徒が数学を学習する意義や必要性について自らに問
いかけ,答えを見いだすことができるよう配慮する
(2)見通しをもって数学的活動に取り組み,振り返ること
・生徒が取り組む問題は,生徒が既習の数学を基にする
など,自ら課題を見いだす機会も設ける
・解決の過程では,問題を解決するための構想をまとめ
られるようにすることが重要である
※導いた結果が期待と異なっても,自らの活動を振り返り評
価することで,改めるきっかけや新しい課題を得る機会が生
まれ,生徒の自立的な取り組みを促す上で大切である
Ⅳ 指導計画の作成と内容の取扱い
3 数学的活動の配慮事項
(3)数学的活動の成果を共有すること
・レポートにまとめ発表すること等を通して,数学的活動の
過程を振り返り,生徒間で成果を共有する機会を設ける
※共有するものは活動の成果だけでなく,途中まででも自分
なりに考えたことや,結果は間違っていても課題を追究し
て感 じた成就感などが考えられる
4 課題学習とその位置付け
(1)課題学習のねらい
・各領域の内容を総合したり,日常の事象や他教科等での
学習から見いだした課題を主体的に解決することを通して,
数学的な見方や考え方をさらに深めること
※課題学習では,各領域の内容を総合して課題の解決に取
り組む学習を行う
Ⅳ 指導計画の作成と内容の取扱い
4 課題学習とその位置付け
(2)課題の満たすべき要件
ア 一人一人の生徒が様々な思考や創意工夫を行うことが
でき,意欲的な追究を継続することができる課題
イ 生徒がそれぞれの方法で結果を見通すことのできる課題
ウ 解決のために多様な数学的な見方や考え方が発揮
される課題
エ 課題の解決だけにとどまらず,その解決を振り返り
発展的に考えることができる課題
(3)通常の授業と課題学習
・通常の授業で問題解決的な学習を継続し,各領域の内
容を総合したり,日常の事象や他教科等での学習から
見いだした課題を解決する学習として課題学習を位置付
ける
Ⅴ 移行期間中の取扱い
1 移行期間中の特例及び留意点
・新学習指導要領pp131~133「中学校数学の移行措置につい
て」の「現行課程」のゴシック体(太字)の内容に「新課程」のゴ
シック体(太字)の内容を追加して指導する
※平成21年度‥第1学年のみ内容を加えて指導
第2学年は,円周角と中心角の関係を削除
※平成22,23年度‥全学年で新課程の内容を追加して指導
2 移行期間中の補助教材
・追加される内容は,教科書に補助教材を加えて指導する
※補助教材は平成20年度末に配布予定
(電子データ[CD-ROM]は2月下旬予定)
Ⅴ 移行期間中の取扱い
3 移行期間中の数学的活動
・新学習指導要領の〔数学的活動〕に規定する事項を加える
ことができる
※各学年に例示された3つの〔数学的活動〕を移行期間から
実施することが可能であるが,できれば行う方向でありたい
新学習指導要領の手引(数学科)
説明終了
ダウンロード

2 内容について - 徳島県立総合教育センター